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 The First Lecture 

Basic Definitions 

       Generalizations of the quadratic formula for finding the roots of 

cubic and quartic polynomials were discovered in the early 1500s. 

Over the next three centuries, many tried to find analogous formulas 

for the roots of higher-degree polynomials, but in 1824, N. H. Abel 

(1802–1829) proved that there is no such formula giving the roots of 

the general polynomial of degree 5. In 1831, E. Galois (1811– 1832) 

completely solved this problem by finding precisely which 

polynomials, of arbitrary degree, admit such a formula for their 

roots. His fundamental idea involved his invention of the idea of 

group. Since Galois’s time, groups have arisen in many other areas 

of mathematics. 

function is aG on a set operation  binaryA  :(1) Definition 

     ∗: G × G → G. 

Definition (2): A group is a set G with an operation ∗ and 
a special element e ∈ G (sometimes denoted by 1), called 
the identity, such that: 

(i) The associative law holds: for every a, b, c ∈ G, 

a ∗ (b ∗ c) = (a ∗ b) ∗ c; 

(ii)  e ∗ a = a for all a ∈ G; 

(iii)  For every a ∈ G, there is aI ∈ G with aI ∗ a = e. 

 

Remark (3): 

An additive group is a set G equipped with an 



 

3 
 

operation (+) and an identity element 0  G such 
that 

(i) a + (b + c) = (a + b) + c for every a, b, c  G; 

(ii) 0 + a = a for all a  G; 

(iii) For every a  G, there is −a  G with (−a) + a = 0. 

 

Note that the inverse of a, in additive notation, is written -a instead 

of a
-1

. 

 
 

Definition (4): A group G is called abelian if it satisfies the 
following: 

x ∗ y = y ∗ x holds for every x , y ∈ G. 

Remark (5): 

This term honors N. H. Abel who proved a theorem, in 

1827, equivalent to there being  a formula for the roots of 

a polynomial if its Galois group is commutative. This 

theorem is virtually forgotten today, because it was 

superseded by a theorem of Galois around 1830. 

 

Definition (6): If G is a group and a  ∈ G, then the unique 
element aI  ∈ G such that aI ∗ a = e is called the inverse of 
a, and it is denoted by a

−1
. 

Here are three more properties holding in all groups. 

 

Lemma (7): If G be a group, then the following statement are holds:  

(i) The cancellation laws hold: if a, b, x  G, and 
either x * a = x * b or a * x = b * x, then a = b. 

(ii)  (a
−1

)
−1

 = a, for all a  G. 



 

4 
 

 
 

(iii)  If a, bG, then: 
 

(a * b)
−1

 = b
−1

 * a
−1

. 

More generally, for all n ≥ 2, 

(a1 * a2 * · · · * an)
−1

 = an
−1

 * · · · * a
2−1 

* a
1−1

. 

Proof: 

(i) a = e * a = (x 
−1

 * x ) * a = x 
−1

 * (x * a) 

                       = x 
−1

 * (x * b) = (x 
−1

 * x ) * b = e * b = b. 

In similar proof, when x is on the right. 

From now on, we will usually denote the product 

a b in a group by ab (we have already abbreviated α 

β to αβ in symmetric groups), and we will denote 

the identity by 1 instead of by e. When a group is 

abelian, however, we will often use additive 

notation. Here is the definition of group written in 

additive notation. 

 

 

The Second Lecture 

Some Examples 

  

In this lecture we give some examples about 

groups, such as (Z,+), (Q\{0},.), Sn with the 

composition operator and Boolean group. 
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Examples: 

 
(i) (Z,+); The set of all integers is an additive abelian 

group with identity e= 0, and with the inverse 

of an integer n being - n.  Similarly, one can see 

that  (Q,+) and (R,+)  are additive abelian 

groups, where Q is the set of rational numbers 

and R is the set of real numbers. 
(ii)  (Q\{0}, .); The set  of all nonzero rational 

numbers, is an abelian group, where (.) is the 
ordinary multiplication, the number 1 is the 
identity, and the inverse of r is 1/r . Similarly, 
(R\{0},.) is a multiplicative abelian group. 

(iii) Let X be a set. Recall that if A and B are 

subsets of X, then their symmetric difference is 

A B=(A-B)(B-  A).The Boolean group P (X 

) is the family of all the subsets of X with 

addition given by symmetric difference. 
(iv) Consider Sn , the set of all permutations of X = {1, 

2, . . . , n}. It is form a group with the 
composition operation. 

 

Remark: Let G be a group, let a, b   G, and let m and n be 

(not necessarily positive) integers. 

(i) If a and b commute, then (ab)
n

= a
n
 b

n

. 
(ii) (a

n
 )

m
  = a

mn
 . 

(iii) a
m

 a
n
 =  a

m+n 
. 
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The Third Lecture 

Subgroups and Langrage Theorem 

 

       A subgroup of a group G is a subset which is a group 

under the same operation as in G. The following definition 

will help to make this last phrase precise. 

 

Definition (1): Let ∗ be an operation on a set G, and let S  
⊆ G be a  

subset. We say that S is closed under ∗ if x ∗ y ∈ S for all x 
, y ∈ S. 

The operation on a group G is a function *: G x G  G.   
 (for example, 2 and −2 lie in Z+, but their sum −2 + 2 = 0 ∈/Z+. 

Definition (2): A subset H of a group G is a subgroup if: 

(i) 1 ∈ H ; 

(ii)  If x , y ∈ H , then x y ∈ H ; that is, H is closed under ∗. 

(iii)  If x ∈ H , then x -1∈ H . 

 

Proposition (3):   Every subgroup H ≤ G of a group G is itself a 

group. 

Proof: Axiom (ii) (in the definition of subgroup) 
shows that H is closed under the operation of G; that is, 
H has an operation (namely, the restriction of the 
operation ∗: G × G → G to H × H ⊆ G × G. This 
operation is associative: 
since the equation (x y)z = x (yz) holds for all x , y, z ∈ 
G, it holds, in particular, for all x , y, z ∈ H . Finally, 
axiom (i) gives the identity, and axiom (iii) gives 
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inverses.    

It is quicker to check that a subset H of a group G is 

a subgroup (and hence that it is a group in its own 

right) than to verify the group axioms for H, for 

associativity is inherited from the operation on G and 

hence it need not be verified again. 

     One can shorten the list of items needed to verify that a 

subset is, in fact, a subgroup. 

 
Proposition (4): A subset H of a group G is a subgroup if 
and only if H is nonempty and, whenever x, y ∈ H, then x 
y

−1
 ∈ H. 

Proof:    If H is a subgroup, then it is nonempty, for 1 ∈ H.  If x , y 
∈ H ,  then y

−1
 ∈ H , by part (iii) of the definition, and so x y

−1
 ∈ H , 

by part (ii). 
Conversely, assume that H  is a subset satisfying the new condition.  
Since 
H is nonempty, it contains some element, say, h. Taking x 
= h = y, we see that e = hh

−1
 ∈ H , and so part (i) holds. If y 

∈ H , then set x = e (which we can now do because e ∈ H ), 
giving y

−1
 = ey

−1
 ∈ H , and so part (iii) holds. Finally, we 

know that (y
−1

)
−1

 = y, by. Hence, if x , y ∈ H , then y
−1

 ∈ H 
and so x y = x (y

−1
)
−1

 ∈ H . Therefore, H is a subgroup of 
G.  

        Since every subgroup contains e, one may replace the 
hypothesis “H is nonempty” in Proposition by “e ∈ H”. 

 
       Note that if the operation in G is addition, then the 
condition in the proposition is that H is a nonempty subset 
of G such that x, y ∈ H implies x- y ∈ H. 

Proposition (5): Let G be a finite group, and a  G. Then 
the order of a, is the number of elements in (a). 
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Definition (6):  If G is a finite group, then the number of 
elements in G, denoted by |G|, is called the order of G. 

Definition (7): If X is a subset of a group G, such that X 

generates G, then G is called finitely generated, and G 

generated by X. 

In particular; If G = ({a}), then G is generated by the 
subset X = {a}. 

Definition (8): 

A group G is called cyclic if G = (a); that is G can be generated 

by only one element say a, and this element is called a generator 

of G. 

Note that we can define cyclic subgroup as follows. 

Definition (9): If G is a group and a ∈ G, write 

(a)= {a
n
: n ∈Z+} = {all powers of a} 

(a) is called cyclic subgroup of G 

generated by a. 

 

Proposition (10): The intersection of any family of 

subgroups is again subgroup. 

 

 

The Forth Lecture 

Coset of sets 
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Definition (1):  If H is a subgroup of a group G and 

a   G, then the coset a H is the subset a H of G, 

where 

a H = {ah: h  H } 

Of course, a = ae ∈ a H. Cosets are usually not subgroups.  

  
     The cosets just defined are often called left 

cosets; there are also right cosets of H, namely,  

subsets of the form  H a      {ha| h H};  these arise 

in further study of groups, but we shall work almost 

exclusively with (left) cosets. 
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In particular, if the operation is addition, then the coset is 

denoted by 

a + H = {a + h : h  H }. 
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Proposition (2): Let G be a group, and H be a subgroup of G, 

for any a, b  G we have the following: 

(i)  a H = b H if and only if b
−1

a  H . In 
particular, a H = H if and only if a  H. 

(ii)  If a H ∩ b H ≠ , then a H = b H. 

(iii)  For each aG: 

Order of H is equal 

to the order of aH. 

Proof: 

(i)  It is clear. 

(ii) It is clear. 

(iii) The function f: H → a H which is given by f (h) 
= ah, is easily seen to be a bijective [its inverse a 
H → H is given by ah r→ a

−1
(ah) = h]. 

Therefore, H and a H have the same number of 
elements. 

Theorem (3): (Lagrange’s Theorem)  

If H is a subgroup of a finite group G, then |H | is a 
divisor of |G|. That is: 

|G| = [G : H ]|H | 

This formula shows that the index [G : H ] is also a divisor of 

|G|. 
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Corollary (4):   If H is a subgroup of a finite group G, then 

[G : H ] = |G|/|H | 

Corollary (5): If G is a finite group and a  G, then 
the order of a is a divisor of |G|. 

Corollary (6): If a finite group G has order m, then a
m

 = e for all 

a  G. 

Corollary (7): If p is a prime, then every group G of order p is 

cyclic. 

Proof: Choose a  G with a≠e, and let H = (a) be the 
cyclic subgroup generated by a. By Lagrange’s 
theorem, |H | is a divisor of |G| = p. Since p is a prime 
and |H | > 1, it follows that |H | = p = |G|, and so H = G.    

 
      Lagrange’s theorem says that the order of a 

subgroup of a finite group G is a divisor of G . Is the 

“converse” of Lagrange’s theorem true? That is, if d is a 

divisor of G, must there exists a subgroup of G having 

order d? The answer is “no;” We can show that the 

alternating group A4 is a group of order 12 which has 

no subgroup of order 6. 

 

 

The Fifth Lecture 

Homomorphism 

 
           An important problem is determining whether 

two given groups G and H are somehow the same.  
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Definition (1):   If (G, *) and (H, ◦) are groups, then a 
function f: G → H is a homomorphism if: 

f (x * y) = f (x ) ◦ f (y) 

for all x , y  G. If f is also a bijective, then f is called 
an isomorphism. We say that G and H are 
isomorphic, denoted by G  H, if there exists an 
isomorphism f: G → H. 

  
Example (2): 
Let be the group of all real numbers with operation 
addition, and let R

+
 be the group of all positive real 

numbers with operation multiplication. The function f: 
R→ R

+
 , defined by f(x)=tx , where t is constant 

number, is a homomorphism; for if x , y R, then 
f (x + y) = t(x+y) = tx ty = f (x ) f (y). 

We now turn from isomorphisms to more general 

homomorphisms. 

 

Lemma (3): Let f: G → H be a homomorphism. 

(i) f (e) = e; 

(ii) f (x 
−1

) = f (x)
−1

; 

Remark (4): 

We can show that any two finite cyclic groups G and H 

of the same order m are isomorphic. It will then follow 

from that any two groups of prime order p are 

isomorphic. 

 

Definition (5): 

A property of a group G that is shared by every 
other group isomorphic to it is called an invariant 

of G. For example, the order, G, is an invariant of 
G, for isomorphic groups have the same order. 
Being abelian is an invariant [if a and b commute, 
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then ab = ba and 

f (a) f (b) = f (ab) = f (ba) = f (b) f (a); 

hence, f (a) and  f (b) commute]. Thus, M2x2 and 

GL(2,R) are not isomorphic, for is abelian and 

GL(2,R) is not.  

 

Definition (6): If f: G → H  is a homomorphism, define 

                           kernel f  = {x  G : f (x ) = e} 

 

and  

 

        image f  = {h  H : h = f (x ) for some x G}
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=  

We usually abbreviate kernel f to ker f and image f to im f  

 
So that if f: G  H is a homomorphism and B is a subgroup of H 
then f

−1
(B) is a subgroup of G containing ker f . 

Note: Kernel comes from the German word meaning 

“grain” or “seed” (corn comes from the same word).  

Its usage here indicates an important ingredient of a 

homomorphism, we give it without proof. 

Proposition: Let f: G → H be a homomorphism. 

(i)  ker f  is a subgroup of G and im f  is a subgroup of H . 

(ii) If x  ker f and if a  G, then ax a
−1
 ker f. 

(iii) f is an injection if and only 

if ker f = {e}. 

  
 

The Sixth Lecture 

Normal Subgroups 

Definition (1):  A subgroup K of a group G is called normal, if 

for each k  K and g  G imply gkg
−1
 K. that is gKg

-1
  G for 

every gG. 

Definition (2): 

Define the center of a group G, denoted by Z (G), to be 

Z (G) = {z  G: zg = gz for all g  G}; 

that is, Z (G) consists of all elements commuting 
with every element in G. (Note that the equation zg 



 

123 
 

= gz  can be rewritten  as  z = gzg
−1

,  so that  no 
other elements in G are conjugate to z. 
 
Remark (3): 

Let us show that Z (G) is a subgroup of G. We 
can easily show that Z(G is subgroup of G. It is 
clear that Z(G)≠  since 1 ∈  Z (G), for 1 commutes 
with everything. Now, If y, z  Z (G), then yg = gy 
and zg = gz for all g  G. Therefore, (yz)g = y(zg) 
= y(gz) = (yg)z = g(yz), so that yz commutes with 
everything, hence yz  Z (G). Finally, if z  Z (G), 
then zg = gz for all g  G; in particular, zg

−1
 = g

−1
 

z. Therefore, 

gz
−1

 = (zg
−1

)
−1

 = (g
−1

z)
−1

 = z
−1

g 

(we are using  (ab)
−1

  = b
−1

a
−1

 and (a
−1

)
−1

  = a). So that Z(G) is 
subgroup pf G. 

Clearly che center Z (G) is a normal subgroup; since if z  Z 
(G) and g  G, then 

gzg
−1

 = zgg
−1

 = z  Z (G) 

A group G is abelian if and only if Z (G) = G. At 
the other extreme are groups G for which Z (G) = 
{1}; such groups are called centerless. For example, 
it is easy to see that Z (S3) = {1}; indeed, all large 
symmetric groups are centerless.  
Proposition (4): 

(i) If H is a subgroup of index 2 in a group G, then g
2
  H for 

every g  G. 

(ii) If H is a subgroup of index 2 in a group G, then 

H is a normal subgroup of G. 

      Proof: 

(i) Since H has index 2, there are exactly two 
cosets, namely, H and a H, where a G\H. Thus, G 
is the disjoint union G = H a H. Take g  G with 
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g  H. So that g = ah for some h  H. If g
2
   H, 

then g
2
 = ah1, where h1  H . Hence, 

g = g
−1

 g
2
 = (ah)

−1
a h1 = h

−1
a

−1
a h1 = h

−1
 h1 H, 

and this is a contradiction. 
(ii) It suffices to prove that if h  H , then the conjugate 

ghg
−1

    H  for every 
g ∈  G. Since H has index 2, there are exactly two cosets, 
namely, H and a H, 
where a    H. Now, either g H or g a H. If g H, then 
ghg

−1
H, 

because H is a subgroup. In the second case, write g = ax, 
where x  H. Then 
ghg

−1
 = a(x hx 

−1
)a

−1
 = ahIa

−1
, where hI = x hx 

−1
   H (for hI 

is a product 

of three elements in  H ).  If ghg  H, then ghg
−1

  = ahIa
−1

    
a H ; that is, 

ahIa
−1

 = ay for some y   H. Canceling a, we have hIa
−1

 = y, 
which gives the contradiction a = y

−1
hI   H. Therefore, if h 

  H, every conjugate of h also lies in H; that is, H is a 
normal subgroup of G.   

Proposition(5) : If K is a normal subgroup of a group G, then 

bK = K b 

for every b   G. 

 

Proof: We must show that bK  Kb and Kb  bK. 
So if bkbK, then clearly bK = bKb

-1
b. 

Since bKb
-1
K, then bKb

-1
= k1 for some k1K. 

This implies that bKKb. Similarity for the other 
case. Thus bK = Kb. 
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              The Seventh Lecture 

Quotient Group 

 

Here is a fundamental construction of a new group from a 

given group. 

 

Theorem (1):  Let G/K denotes the family of all the 

cosets of a subgroup K of G. If K is a normal 

subgroup, then: 

a K bK = abK 

for all a, bG, and G/K is a group under this operation 

Definition (2): The group G/K is called the quotient 

group; when G is finite, its order G/K is the index 

[G:K]   (presumably, this is the reason quotient groups 

are so called). 

           We can now prove the converse of Proposition 2.91(ii). 

Proposition (3): Every normal subgroup K of a 

group G is the kernel of some homomorphism. 

Proof: 

 Define the natural map π: G  G/K by π(a) = a K. 

With this notation, the formula a K bK =abK can be 

rewritten as π(a)π(b) = π(ab); thus, π is a 

(surjective) homomorphism. Since K is the identity 

element in G/K, 

ker π = {a  G : π(a) = K } = {a  G : a K = K } = K  
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The Eighth Lecture 

First Isomorphism Theorem 
 

The following theorem shows that every 

homomorphism gives rise to an isomorphism, and 

that quotient groups are merely constructions of 

homomorphic images. 

 

Theorem (1): (First Isomorphism Theorem) 

If f: GH is a homomorphism, then: 

G/ ker f  im f 

Where im f = f(H). In more detail, if we put ker f = K , then the 
function ϕ : G/K → f(H) is given by: 

ϕ: a K  r→ f (a) for each aG, is an isomorphism. 

 

Proof:   

It is clear that ker f is a normal subgroup of G, and we can easily 
show that ϕ is well-defined. Let us now see that ϕ is a 
homomorphism. Since  f is a homomorphism and ϕ(a K ) = f (a), 

ϕ(a K bK ) = ϕ(abK ) = f (ab) = f (a) f (b) = ϕ(a K )ϕ(bK ). 

Also ϕ is surjective and injective Therefore, ϕ: G/K 
→ im f is an isomorphism.  
   
Remark (2): 
1. Here is a minor application of the first isomorphism theorem. 

For any group 
G, the identity function f: G → G is a surjective 
homomorphism with ker f = 
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{1}. By the first isomorphism theorem, we have 

                                   G/{1}  G 

2. Given any homomorphism f:GH , one should 

immediately ask for its kernel and its image;  the first  

isomorphism  theorem  will then provide an 

isomorphism 

 
G/ ker f   im f . Since there is no significant difference 
between 
isomorphic groups, the first isomorphism theorem 

also says that there is no significant difference 

between quotient groups and homomorphic images. 

 

Proposition (3):  

1. If H and K are subgroups of a group G, and if 
one of them is a normal subgroup, then HK is a 
subgroup of G. Moreover, HK = KH. 

2. If both H and K are normal subgroups, then HK is a normal 

subgroup. 

Proof: 

1. Assume first that K is normal in G. We claim that HK = 
KH.   If hk    HK,  then: 

hk = hkh
−1

h = k1 hKH 

where k1 = hkh
−1

, then k1 K, because K is normal subgroup  

Hence, HK = KH. For the reverse inclusion, write 
kh = hh

−1
kh = hk2  HK, where k2 = h

-1
kh. 

 (Note that the same argument shows that HK = KH 
if H is normal subgroup of G.) 

We now show that HK is a subgroup. Since e  H 
and e  K , we have e = e · e  HK. 
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 If hk  HK, then (hk)
−1

 = k
−1

 h
−1

  KH = HK. If 
hk, h1k1  HK, then h1

−1
 kh1  = ke  K  and 

Hkh1 k1  = hh1(h1
−1

 kh1)k1  = (hh1 )(kek1)  HK. 

Therefore, HK is a subgroup of G. 
2. If g  G, then: 

ghkg
−1

 = (ghg
−1

)(gkg
−1

)  HK 

Therefore, HK is normal in G. 

 

 

The Ninth Lecture 

Second Isomorphism Theorem 

 

Here is a useful counting result. 

 

 Definition (1): If H and K are subgroups of a finite 

group G, then then the Product Formula is: 

|HK||H ∩ K | = |H ||K | 

 

Theorem (2): (Second Isomorphism Theorem) 

      If H and K are subgroups of a group G with H is normal 
in G, then HK is a subgroup of G and  H ∩ K is normal in 
K. Moreover:  

K /(H ∩ K )  HK/H 

Proof: 

We begin by showing first that HK/H makes sense, and then 
describing its elements. Since H is normal subgroup of G, 
then HK is a subgroup of G. Normality of H  in HK follows 
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from a more general fact:  if  H  S G and if H  is normal 
in G, then H  is normal in S. 

We can easily show that each coset x H  HK/H has the  

form  k H for some kK. It follows that the function f: K 
HK/H, given by f(k) = k H, is surjective. Moreover, f is a 
homomorphism, for it is the restriction of the natural map π: 
G → G/H.  Since ker π = H, it follows that ker f = H ∩ K  
and so H  ∩ K  is a normal subgroup of  K . The first 
isomorphisim theorem gives: 
 

K /(H ∩ K ) HK/H  

Remark (3): 

      The second isomorphism theorem gives the product 
formula in the special case  when  one of  the  subgroups is  
normal:  if  K /(H  ∩ K )   H K /H ,  then: 
|K /(H ∩ K )| = |H K /H |, and so |H K ||H ∩ K | = |H ||K |. 

 

The Tenth Lecture 

Third Isomorphism Theorem 

 
      In the following lecture we study the third 

important theorem of fundamental isomorphism 

theorem. 

Theorem (1): (Third Isomorphism Theorem) 

       If H and K are normal subgroups of a group G with K  
≤ H , then  H/K is normal in G/K and 

(G/K )/(H/K )  G/H 
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Proof:   

Define  f: G/KG/H  by  f(a K) = a H. Note that f is a 
(well- defined function, for if a G = b K, then a

-1
bK But 

KH, thus a
-1

b H, and so a H= b H , and we are done. It is 
easy to see that f is an epimorphism. 

Now ker f = H/K. Also clearly H/K is a normal subgroup of 

G/K. Since f is monomorphism, so by the first isomorphism 

theorem we have: 
(G/K )/(H/K )  G/H 

The third isomorphism theorem is easy to remember: the 

K’s in the fraction (G/K )/(H/K ) can be canceled. One 

can better appreciate the first isomorphism theorem after 

having proved the third one. The quotient group (G/K 

)/(H/K ) consists of cosets (of H/K) whose 

representatives are themselves cosets (of G/K ).  

 

Here is another construction of a new group from two given groups. 

 

Definition (2): If H and K are groups, then their direct 

product, denoted by HxK, is the set of all ordered pairs 

(h, k) equipped with the following operation: 

(h, k)(h1, k1) = (hh1, kk1) 

It is routine to check that HXK is a group [the identity 
element is (e, e1) and (h, k)

−1
 = (h

−1
, k

−1
).   

Remark (3): let G and h be groups.Then HxK is abelian 
if and only if both  H and K  are abelian. 

We end the tenth lecture by the following example. 

Example: 
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Zx2Z is the direct product between (Z, +) and (2Z, +) 
groups. 

The identity element is (0, 0), and the inverse element of 
(a, b) is (-a, -b). 
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