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The First Lecture

Basic Definitions

Generalizations of the quadratic formula for finding the roots of
cubic and quartic polynomials were discovered in the early 1500s.
Over the next three centuries, many tried to find analogous fermulas
for the roots of higher-degree polynomials, but in 1824:N%H. Abel
(1802-1829) proved that there is no such formulasgivingthe roots of
the general polynomial of degree 5. In 1831, EGalois (1811 1832)
completely solved this problem by finding precisely which
polynomials, of arbitrary degree, admit such a formula for their
roots. His fundamental idea involved hisyinvention of the idea of
group. Since Galois’s time, groups have arisen in many other areas
of mathematics.

Definition (1): A binary operation on a set G is a function

*»GxG—G.

Definition (2): A group is a set G with an operation * and
a special elemente €G (sometimes denoted by 1), called
the identityssuch that:

(i) The associative law holds: forevery a, b, ¢ € G,
ax(bx*xc)=(axb)=xc;

(i) exa=aforalla € G;
(iii) For every a € G, thereisal e Gwithal xa=e.

Remark (3):
An additive group is a set G equipped with an
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ohperation (+) and an identity element 0 € G such
that

a+(b+c)=(a+Db)+cforeverya, b, ceG;
(il0+a=aforalla e G;
(iii)For every a € G, there is —a € G with (—a) +a=0.

Note that the inverse of a, in additive notation, is written -a instead
ofal,

Definition (4): A group G is called abelian if it\satisfies the
folTowing:

X * y =y * X holds for every x , y € Gs
Remark (5):

This term honors N. H. Abel™whg proved a theorem, in
1827, equivalent to there being, aformula for the roots of
a polynomial if its Galois group is commutative. This
theorem is virtually forgotten today, because it was
superseded by a thegrem of Galois around 1830.

Definition (6)™ G is a group and a € G, then the unique
element al € @ such that al xa = e is called the inverse of
a, and itfis denoted by a .

Hexe are three more properties holding in all groups.

Lemma (7): If G be a group, then the following statement are holds:

(i) The cancellation laws hold: if a, b, x € G, and
eitherx*a=x*bora*x=b*x,thena=Dhb.
(i) (@) ' =a, forallacG.
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(iii) If a, beG, then:
(@*b)'=pb'*a’.
More generally, for alln> 2,
(i *ay*- - -*a,) '=a, *---*a '*a'.
Proof:
(i) aze*a=(x '*x)*a=x"'*(x*a)
=x '*(x*b)=(x '*x)*b=e*Bb.
In similar proof, when x is on the right.

From now on, we will usually denoté.the product
a b in a group by ab (we have already/abbreviated o
B to aff in symmetric groups), and we will denote
the identity by 1 instead of by ey When a group is
abelian, however, we WWill_often use additive
notation. Here is the definition of group written in
additive notation.

The Second Lecture

Some Examples

In this lecture we give some examples about
groups, such as (Z,+), (Q\{0},), S, with the
composition operator and Boolean group.



Examples:

(i) (Z,+); The set of all integers is an additive abelian
group with identity e= 0, and with the inverse
of an integer n being - n. Similarly, one can see
that (Q,+) and (R,+) are additive abelian
groups, where Q is the set of rational numbers

and R is the set of real numbers.

(i) (Q\{0}, .); The set of all nonzero ratignal
numbers, is an abelian group, where”(3) is the
ordinary multiplication, the number, 1 ‘is the
identity, and the inverse of r is 1/r\/Similarly,
(R\{0},.) is a multiplicative abelian group.

(iii)  Let X be a set. Recall that if ‘A"and B are
subsets of X, then their symmetric difference is
AAB=(A-B)u(B- A).The Boelean group P (X
) is the family of all the, subsets of X with
addition given by symmetric difference.

(iv) Consider S, , the set of all permutations of X = {1,

2, . .., nEANLt is form a group with the
compositiomoperation.

Remark: Let Ghe agroup, leta, b G, and let m and n be
(not necessarily=positive) integers.

(i) Ifaand b commute, then (ab)n: ab.
(ii) (arr) n =a m+h

Gi))a a =a



The Third Lecture

Subgroups and Langrage Theorem

A subgroup of a group G is a subset which is a group
under the same operation as in G. The following definition
will help to make this last phrase precise.

Definition (1): Let = be an operation on a set G, and\letS
C Gbea

subseé. We say that S is closed under x if x * y €S for all x
,Y €ES.

The operation on adgroulp Gisafunction *»G x G - G.
(for example, 2 and -2 lie in Z,, buttheirsum -2+2 =0 ZZ,.

Definition (2): A subset H ofwa,group G is a subgroup if:

()1 EH;
(ii) If x,y € H, thenxy € H; that is, H is closed under .
(iii) If x € H,themx-1e H.

Proposition (3): " Every subgroup H < G of a group G is itself a
group.

Proof: AAxifom (ii) (in the definition of subgroup)
shows that H is closed under the operation of G; that is,
H has” an operation (namely, the restriction of the
operation *: G x G > Gto Hx H <€ G x G. This
operation is associative:

since the equation (X y)z = x (yz) holds forall x , y, z €

G, it holds, in particular, for all x , y, z € H . Finally,
axiom (i) gives the identity, and axiom (iii) gives
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Inverses.

It is quicker to check that a subset H of a group G is
a subgroup (and hence that it is a group in its own
right) than to verify the group axioms for H, for
associativity is inherited from the operation on G and
hence it need not be verified again.

One can shorten the list of items needed to verify that a
subset is, in fact, a subgroup.

Proposition (4): A subset H of a group G is a_subgroup if
and only if H is nonempty and, whenever X, y ‘€2H;then x
y 'eH.

Proof If H is a subgroup, then it is nonempty, for 1 € H. tf X, y
€H, theny " € H, by part (iii) of the definition, and so x y

art ||
g\/ nC\éerse y assume that H is a subsetsatisfying the new condition.

H |s  nonempty, it contains some element, say, h. Taking x
y we see that e = hh " e 7 and so part (i) holds.

e H heq setx T e (I\ilvhlch we ean now do because e € H
|V|n = ey, = and so part (iii) holds. Fmaly We
now that (y 3/ Jlby Hence, if X,y € H, theny

%n SOXY=X(y 3’ €'H . Therefore, H is a subgroup of

Since every subgroup contains e, one may replace the
hypothesis “H 1§'nonempty” in Proposition by “e € H”.

Nateythat if the operation in G is addition, then the
condition in the proposition is that H is a nonempty subset
of GJsuch that x, y € H implies x- y € H.

Proposition (5): Let G be a finite group, and a € G. Then
the order of a, 1s the number of elements in (a).




Definition (6): If G is a finite group, then the number of
elements in G, denoted by |G|, is called the order of G.

Definition (7): If X is a subset of a group G, such that X
generates G, then G is called finitely generated, and G
generated by X.

In particular; If G = ({a}), then G is generated by the
subset X = {a}.

Definition (8):
A group G is called cyclic if G = (a); that is G'¢canybe generated

by only one element say a, and this element\is*ealled a generator
of G.

Note that we can define cyclic subgrouptas,follows.

Definition (9): If G is a group andaeNa, write

(@)= {a": n €Z,} = {all powers ofa}
(a) is called cyclic subgroup of G
generated by a.

Proposition (10):"Rhe intersection of any family of
subgroups is.agairrsubgroup.

The Forth Lecture

Coset of sets



Definition (1): If H is a subgroup of a group G and
a G, then the coset a H is the Subset a H of G,
where

aH={ah:heH}

Of course, a = ae € a H. Cosets are usually not subgroups.

The cosets just defined are often called left
cosets; there are also right cosets of H, namely;
subsets of the form Ha  {ha| h eH}; these akise
in further study of groups, but we shall work almost
exclusively with (left) cosets.



In particular, if the operation is addition, then the coset is
denoted by

atH={a+h:heH}
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Proposition (2): Let G be a group, and H be a subgroup of G,
forany a, b € G we have the following'

(i)aH:bHifandoniylfb aeH.
particular,aH =H ifand only ifa € H

(i) faHN b H#P, thenaH =b H.
(iii) For each aeG:
Order of H is equal
to the order of aH.

Proof:

(i) Itis clear.
(ii) It is clear.

(iii) The function f: H — a H whicheis(given by f (h)
= ah, is easily seen to be a bljeCtlveLl'[S Inverse a
H > H is 1venb?;ahr—>a (ah) = h].
Therefore, H and a H jhave‘the same number of
elements.

Theorem (3): (Lagrafnige’s Theorem)

If H is a subgroup of & finite group G, then |[H | is a
divisor of |G]. Rhatis:

GI=[G:H]H|

This#ormula shows that the index [G : H ] is also a divisor of
IGh
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Corollary (4): If His a subgroup of a finite group G, then
[G:H]=[Gl/[H|

Corollary (5): If G is a finite group and a € G, then
the order of a 1s a divisor of |G£1.

Corollary (6): If a finite group G has order m, then a™ =g for/all
ae G.

Corollary (7): If p is a prime, then every group~G of order p is
cyclic.

Proof: Choose a € G with a#e, and let.H =+(a) be the
cyclic subgroup generated by a. By Lagrange’s
theorem, |H | is a divisor of |G| = p.(Sinee p is a prime
and |[H | >'1, it follows that |H | zp=,/6|, and so H = G.

Lagrange’s theorem ysaysnthat the order of a
subgroup ?f a finite group/G“is a divisor of G . Is the
“converse” of Lagrange’s theorem true? That is, if d is a
divisor of G, must thereexists a subgroup of G having
order d? The answer’is “no;” We can show that the
alternating grotip /A4 is a group of order 12 which has

no subgroup\oforder 6.

The Fifth Lecture

Homomorphism

An important problem is determining whether
two given groups G and H are somehow the same.

Yot



Definition (1): If (G, *) and (H, °) are groups, then a
tunction T: G — H is a homomorphismif:

fx*y)=fx)-f(y)

forall x ,y € G, If fis also a bijective, then f is called
an isomorphism. We say "that G and H are
iIsomorphic, denoted by G "= H, if there exists an
isomorphism f: G — H.

Example (2):

Let be the group of all real numbers with operation
addition, and let R" be the group of all positive¥real
numbers with operation multiplication. The fUnCtion f:
R— R , defined by f(x)=tx , where twis constant
number, is @ homomorphism; for if x , y eR\then

f(x+y) =tlx+y) = txty =L (x )T (y).

We now turn from isomorphisms to moge general
homomorphisms.

Lemma (3): Let f: G — Hehe a homomorphism.

()f(e)=¢;
(i) fx)=f0() "

Remark (4):

We can showrthat any two finite cyclic groups G and H
of the same*arder m are isomorphic. It will then follow
from that any two groups of prime order p are
isomorphic.

Definition (5):

A property of a group G that is shared by every
other group isomorphic to it is called an invariant
of G. For example, the order, G, is an invariant of
G, for isomorphic groups have the same order.
Being abelian is an invariant [if a and b commute,
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then ab = ba and
f(a)f(b)="1(ab) =f(ba) =1 (b) f (a);

hence, f (a) and f (b) commute]. Thus, M, and
GL(2,R) are not isomorphic, for is abelian and
GL(2,R) is not.

Definition (6): If f: G — H is a homomorphism, define

kernel f ={x e G:f(x)=¢e}

and

image f ={h € H: h =1f((%)for some x G}

Yol



We usually abbreviate kernel f to ker f and image f to im f

So that if f: G — H is a homomorphism and B is a subgroup of H
then f "(B) is a subgroup of G containing ker f .

Note: Kernel comes from the German word meaning
“grain” or “seed” (corn comes from the same word).

Its usage here indicates an important ingredient of a
homomorphism, we give it without proof.

Proposition: Let f: G — H be a homomorphism.

(i)  kerf isasubgroup of G and im f is asubgroup of H .

(i) Ifx e ker fand if a € G, then ax a te=ker f.
(iii) fis an injection if and only

if ker f = {e}.

The Sixth Lecture
Normal Subgroups

Definitign (1)% A subgroup K of a group G is called normal, if
for each kne K and g € G imply gkg '€ K. that is gkg™ < G for
every geG.

Definition (2):
Define the center of a group G, denoted by Z (G), to be

Z(G)={ze G:zg=gzforallg € G},

that is, Z (G) consists of all elements commuting
with every element in G. (Note that the equation zg
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= gz can be rewritten as z = gzg ', so that no
other elements in G are conjugate to z.

Remark (3):

Let us show that Z éG& is a subgroup of G. We
can easily show that Z(G is subgroup of G. It is
clear that Z(G)#0 since 1 € Z (G), for 1 commutes
with everything. Now, Ify, z € Z (G), then yg = gy
and zg = gz for all g € G. Therefore, (yz)g = y(zg)
= vy(9z) = (yg)z = g(yz), so that yz commutes wi
everything, hence ?/z e Z (G). Finally, if z € 4 (G)i
then zg = gz for all g € G; in particular, zg "=/0%
z. Therefore,

9z '=(zg ) '=(@'2)'=zg

(we are using (ab)” =b'a ' and (an)-’ = a). So that Z(G) is
subgroup pf G.

Clearly che center Z (G) is\am@rmal subgroup; since if z € Z
(G)and g € G, then

929 ' =299 \= 2 Z (G)
A group G is abelian’if and only if Z (G) = G. At
the other extreme are ‘groups G for which Z (G) =
{1}, such groups,are called centerless. For example,

it is easy togsee that Z (S3) = {1}, indeed, all large
symmetric greups are centerless.

Propositiony(4):
(i) If H is & subgroup of index 2 in a group G, then g° e H for
every g € G.
(ii)If H is a subgroup of index 2 in a group G, then
H is a normal subgroup of G.

Proof:

(i) Since H has index 2, there are exactly two
cosets, namely, H and a H, where a eG\H. Thus, G
Is the disjoint union G = H wa H. Take g € G with
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gheEH So that g = ah for some h € H. Ifg ¢ H,
then g —ahl,w ere h; € H . Hence,

g=g'g’=(@h)'ah;=h"a'ah;=h™" he H,

and this is a contradiction. _
(i) It suffices to prove that if h € H , then the conjugate

hg." € H forevery

% Since, H has INdex 2, there are exactly two_cosets,
amely, Hand a H

wherea ¢ H. Now, either g eH or g ea H. If g eH, then
ghg 'eH,

b cause H| a br%;roup In the second case, ywite g = ax,

er1e X € h D
g = a(x hx =aha !, where h; #xhx""' € H (for h,
IS a product
of three elements in H). If ghge H thenghg' =aha ' €
aH ;thatis,

aha ' = = ay forsomey € H. Cancellng a, we have hla™' =y,
which gives the contradietion &= y 'h, € H. Therefore, if h
€ H, every conjugate,of h'also lies in H; that is, H is a
normal subgroup of G!

Proposition(5) : If Kas,a normal subgroup of a group G, then

bK=Kb

for every b €N\G.

Progf: We must show that bK Kb and Kb < bK.
Soaf bkebkK, then clearly bK =bKb™b.

Since bKb™eK, then bKb™= |1 for some k;eK.
a

This implies that bKeKb. Simi rity for the other
case. Thus bK = Kb.
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The Seventh Lecture
Quotient Group

Here is a fundamental construction of a new group from’a
given group.

Theorem (1): Let G/K denotes the family of all/ the
cosets of a subgroup K of G. If K is aynoermal
subgroup, then:

a K bK = abK
for all a, beG, and G/K is a group under this operation

Definition (2): The group G/Ksis-Called the quotient
group; when G is finite,its ‘erder G/K is the index
[G:K] (presumably, this\is the reason quotient groups
are so called).

We can now prove-the converse of Proposition 2.91(ii).

Proposition{(3). Every normal subgroup K of a
group G.is the'kernel of some homomorphism.

Proof:

Pefine the natural map n: G — G/K by n(a) = a K.
With this notation, the formula a K bK =abK can be
rewritten as m(a)m(b) = w(ab); thus, mis a
(surjective) homomorphism. Since K is the identity
element in G/K,

kerr={aeG:m(a)=K}={aeG:aK=K}=K

\Yo



The Eighth Lecture
First Isomorphism Theorem

The following theorem shows that every
homomorphism gives rise to an isomorphism, and
that quotient groups are merely constructions of
homomorphic images.

Theorem (1): (First Isomorphism Theorem)

If f: G—H is a homomorphism, then:

G/ ker f=im.f

Where im f = f(H). In more detail Mf we put ker f = K, then the
function ¢ : G/K — f(H) is given.by:

¢: a K r— f(a) for each a&G,’1s an isomorphism.

Proof:

It is clear that Ker/f is a normal subgroup of G, and we can easily
show that ¢ %is well-defined. Let us now see that ¢ is a
homomorphism. Since fis a homomorphism and ¢(a K ) = f (a),

d(a K bK )&= d(abK ) = f (ab) = f (a) f (b) = d(a K Yd(bK ).

Alsp ¢ is surjective and injective Therefore, ¢: G/K
=4m f is an iIsomorphism.

Remark (2):
1. Here is a minor application of the first isomorphism theorem.
For any rou_P _ _ o
G, the'identity function f: G — G is a surjective
homomorphism with ker f =
YYH




{1}. By the first isomorphism theorem, we have
GH{1} =G
2. Given any homomorphism f.G—»H , one should
immediately ask for its kernel and its image; the first
isomorphism  theorem  will then provide an
iIsomorphism

G/ ker f = imf. Since there is no significant difference
between

iIsomorphic groups, the first isomorphism theorem
also says that there is no significant difference
between quotient groups and homomorphicHgages.

Proposition (3):

1. If H and K are subgroups of'a greup G, and if
one of them is a normal subgroup, then HK is a
subgroup of G. Moreqver, HK = KH.

2. If both H and K are normal subgroups, then HK is a normal
subgroup.
Proof:

1. Assume first.that K is normal in G. We claim that HK =
KH. Ifhk, e¥HK, then:

hk = hkh™'h = k; he KH

where k;’= hkh™', then k; e K, because K is normal subgroup

Hence, I_—IlK = KH. For the reverse inclulsion, write
kh = hh 'kh = hk, e HK, where k, = h™kh.

_gNote that the same argument shows that HK = KH
It H is normal subgroup of G.)

We now show that HK is a subgroup. Since e € H
ande € K,wehavee=¢e-e € HK,
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If hk € HK, then %hlg)_l =k h' e KH = HK. If
hk, hik; € HK, then h; " kh; = ke € K and

Hkhl k]_ - hhl(hlil kh]_)kl = (hhl )(kekl) e HK.

Therefore, HK is a subgroup of G.
2. If g € G, then:

ghkg ™" = (ghg )(gkg ) € HK

Therefore, HK is normal in G.

The Ninth Lecture
Second Isomorphism Thebrem

Here is a useful counting result.

Definition (1): If H and K are\subgroups of a finite
group G, then then the Product Formula is:

HKAH N K [=H [|K |

Theorem (2)(Second Isomorphism Theorem)

If H and K are subgroups of a group G with H is normal
in Gythen HK is a subgroup of G and H N K is normal in
K“Moreover:

K /(HNK)=HK/H

Proof:

We begin by showing first that HK/H makes sense, and then
describing its elements. Since H is normal subgroup of G,
then HK is a subgroup of G. Normality of H in HK follows
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from a more general fact: if Hc Sc G and if H is normal
in G, then H s normal in S.

We can easily show that each coset x H € HK/H has the
form k H for some keK. It follows that the function f: K—
HK/H, given by f(k) = k H, is surjective. Moreover, f is a
homomorphism, for it is the restriction of the natural map
G — G/H. Since ker © = H, it follows that ker f=H N K
and so H N K is a normal subgroup of K . The first
iIsomorphisim theorem gives:

K/H NK)z=HK/H
Remark (3):

The second isomorphism theorem gives the product
formula in the special case when one of “the’ subgroups is
normal: if K/(H NK) =H K/H ,“then:
IK/(HNK)[=[HK/H, and so JHAHN K |=|H |K |.

The Fenth Lecture
Third Jsomorphism Theorem

In the follewing lecture we study the third
important theorem of fundamental isomorphism
theorem(

Theorem (1): (Third Isomorphism Theorem)

If H and K are normal subgroups of a group G with K
<H, then H/K is normal in G/K and

(GIK )I(HIK ) = G/H
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Proof:

Define f. G/K—>G/H by f(a K) = a H. Note that fisa
(well- deflned function, for if a G = b K, then a*beK But
KcH, thus a'be H, and so a H= b H and we are done. It is
easy to see that f is an epimorphism.

Now ker f = H/K. Also clearly H/K is a normal subgroup of
G/K. Since f is monomorphism, so by the first isomorphism

theorem we have:
(G/K)/(H/IK) = G/H

The third isomorphism theorem is easy to remember: the
K’s in the fraction (G/K )/(H/K) can be canceled. One
can better appreciate the first isomorphism theorem after
having proved the third one. The quotienat group (G/K

)J(H/K ) consists of cosets aofs, H/K) whose
representatives are themselves cosets(6£ G/K ).

Here is another construction of\a’new group from two given groups.

Definition (2): If H and _K/are groups, then their direct
product, denoted by MxKy; is the set of all ordered pairs
(h, k) equipped with,the following operation:

(A7 k)(hy, k1) = (hhy, Kky)

It is routine to Check that HXK |s a group [the identity
element/s (€2 e;) and (h, k) ' = (h™', k).

Remark (3): let G and h be groups.Then HxK is abelian
if and’only if both H and K are abelian.

We end the tenth lecture by the following example.

Example:
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Zx2Z is the direct product between (Z, +) and (2Z, +)
groups.

The identity element is (0, 0), and the inverse element of
(a, b) is (-a, -b).
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